- 1.
Finnerup, N. B. et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain157, 1599–1606 (2016).
CASPubMedPubMed CentralArticle Google Scholar
- 2.
Alles, S. R. A. & Smith, P. A. Etiology and pharmacology of neuropathic pain. Pharmacol. Rev.70, 315–347 (2018).
CASPubMedArticlePubMed Central Google Scholar
- 3.
Sandkuhler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev.89, 707–758 (2009).
PubMedArticleCASPubMed Central Google Scholar
- 4.
Stemkowski, P. L. & Smith, P. A. Sensory neurons, ion channels, inflammation and the onset of neuropathic pain. Can. J. Neurol. Sci. J. Can. Sci. Neurol.39, 416–435 (2012).
Article Google Scholar
- 5.
Abdulla, F. A. & Smith, P. A. Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J. Neurophysiol.85, 630–643 (2001).
CASPubMedArticlePubMed Central Google Scholar
- 6.
Amir, R., Michaelis, M. & Devor, M. Membrane potential oscillations in dorsal root ganglion neurons: Role in normal electrogenesis and neuropathic pain. J. Neurosci. Off. J. Soc. Neurosci.19, 8589–8596 (1999).
CASArticle Google Scholar
- 7.
Djouhri, L., Smith, T., Ahmeda, A., Alotaibi, M. & Weng, X. Hyperpolarization-activated cyclic nucleotide-gated channels contribute to spontaneous activity in L4 C-fiber nociceptors, but not Aβ-non-nociceptors, after axotomy of L5-spinal nerve in the rat in vivo. Pain159, 1392–1402 (2018).
CASPubMedArticlePubMed Central Google Scholar
- 8.
Djouhri, L., Zeidan, A., Abd El-Aleem, S. A. & Smith, T. Cutaneous Aβ-non-nociceptive, but not C-nociceptive, dorsal root ganglion neurons exhibit spontaneous activity in the streptozotocin rat model of painful diabetic neuropathy in vivo. Front. Neurosci.14, 1–10 (2020).
Article Google Scholar
- 9.
Boakye, P. A. et al. Receptor dependence of BDNF actions in superficial dorsal horn: Relation to central sensitization and actions of macrophage colony stimulating factor 1. J. Neurophysiol.121, 2308–2322 (2019).
CASPubMedArticlePubMed Central Google Scholar
- 10.
Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature438, 1017–1021 (2005).
ADSCASPubMedArticlePubMed Central Google Scholar
- 11.
Guan, Z. et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat. Neurosci.19, 94–101 (2016).
CASPubMedArticlePubMed Central Google Scholar
- 12.
Scholz, J. & Woolf, C. J. The neuropathic pain triad: Neurons, immune cells and glia. Nat. Neurosci.10, 1361–1368 (2007).
CASPubMedArticlePubMed Central Google Scholar
- 13.
Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature424, 778–783 (2003).
ADSCASPubMedArticle Google Scholar
- 14.
Ulmann, L. et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J. Neurosci.28, 11263–11268 (2008).
CASPubMedPubMed CentralArticle Google Scholar
- 15.
Woolf, C. J. Evidence for a central component of post-injury pain hypersensitivity. Nature306, 686–688 (1983).
ADSCASPubMedArticle Google Scholar
- 16.
Coull, J. A. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature424, 938–942 (2003).
ADSCASPubMedArticle Google Scholar
- 17.
Ferrini, F. et al. Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic metaplasticity and modality-specific sensitization. Nat. Commun.11, 3935 (2020).
ADSCASPubMedPubMed CentralArticle Google Scholar
- 18.
Lu, V. B. et al. Brain-derived neurotrophic factor drives the changes in excitatory synaptic transmission in the rat superficial dorsal horn that follow sciatic nerve injury. J. Physiol.587, 1013–1032 (2009).
ADSCASPubMedPubMed CentralArticle Google Scholar
- 19.
Biggs, J. E., Lu, V. B., Stebbing, M. J., Balasubramanyan, S. & Smith, P. A. Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization?. Mol. Pain6, 44 (2010).
PubMedPubMed CentralArticleCAS Google Scholar
- 20.
Lu, V. B., Ballanyi, K., Colmers, W. F. & Smith, P. A. Neuron type-specific effects of brain-derived neurotrophic factor in rat superficial dorsal horn and their relevance to ‘central sensitization’. J. Physiol.584, 543–563 (2007).
CASPubMedPubMed CentralArticle Google Scholar
- 21.
Lu, V. B. et al. Substantia Gelatinosa neurons in defined-medium organotypic slice culture are similar to those in acute slices from young adult rats. Pain121, 261–275 (2006).
PubMedArticlePubMed Central Google Scholar
- 22.
Biggs, J. E. et al. Defined medium organotypic cultures of spinal cord put ‘pain in a dish’ #. Trans. Isolat. Cent. Nerv. Syst. Circuits73, 405–436 (2012).
Article Google Scholar
- 23.
Boakye, P. A. et al.Characterization of Superficial Dorsal Horn Neurons from ‘‘Tamamaki” Mice and Stability of their GAD67-EGFP Phenotype in Defined-Medium Organotypic Culture. (2018).
- 24.
Cassidy, R. M. et al. Frequency-independent biological signal identification (FIBSI): A free program that simplifies intensive analysis of non-stationary time series data. bioRxivhttps://doi.org/10.1101/2020.05.29.123042 (2020).
Article Google Scholar
- 25.
Smith, P. A. BDNF: No gain without pain?. Neuroscience283, 107–123 (2014).
CASPubMedArticlePubMed Central Google Scholar
- 26.
Asghar, A. U. R. et al. Oscillatory activity within rat substantia gelatinosa in vitro: A role for chemical and electrical neurotransmission. J. Physiol.562, 183–198 (2005).
CASPubMedArticlePubMed Central Google Scholar
- 27.
Chapman, R. J., La Corte, P. F. C., Asghar, A. U. R. & King, A. E. Network-based activity induced by 4-aminopyridine in rat dorsal horn in vitro is mediated by both chemical and electrical synapses. J. Physiol.587, 2499–2510 (2009).
CASPubMedPubMed CentralArticle Google Scholar
- 28.
Ochalski, P. A. Y., Frankenstein, U. N., Hertzberg, E. L. & Nagy, J. I. Connexin-43 in rat spinal cord: Localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions. Neuroscience76, 931–945 (1996).
Article Google Scholar
- 29.
Kay, C. W. P., Ursu, D., Sher, E. & King, A. E. The role of Cx36 and Cx43 in 4-aminopyridine-induced rhythmic activity in the spinal nociceptive dorsal horn: an electrophysiological study in vitro. Physiol. Rep.4, 1–10 (2016).
ArticleCAS Google Scholar
- 30.
Lu, V. B., Colmers, W. F. & Smith, P. A. Long-term actions of BDNF on inhibitory synaptic transmission in identified neurons of the rat substantia gelatinosa. J. Neurophysiol.108, 441–452 (2012).
CASPubMedArticlePubMed Central Google Scholar
- 31.
Yasaka, T., Tiong, S. Y., Hughes, D. I., Riddell, J. S. & Todd, A. J. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain151, 475–488 (2010).
PubMedPubMed CentralArticle Google Scholar
- 32.
Grudt, T. J. & Perl, E. R. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol.540, 189–207 (2002).
CASPubMedPubMed CentralArticle Google Scholar
- 33.
Hughes, D. I. & Todd, A. J. Central nervous system targets: inhibitory interneurons in the spinal cord. Neurother. J. Am. Soc. Exp. Neurother.17, 874–885 (2020).
Google Scholar
- 34.
Fabbro, A., Pastore, B., Nistri, A. & Ballerini, L. Activity-independent intracellular Ca2+ oscillations are spontaneously generated by ventral spinal neurons during development in vitro. Cell Calcium41, 317–329 (2007).
CASPubMedArticlePubMed Central Google Scholar
- 35.
Sibilla, S. et al. The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinement. Eur. J. Neurosci.29, 1543–1559 (2009).
PubMedArticlePubMed Central Google Scholar
- 36.
Bardoni, R. et al. Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. J. Physiol.588, 831–846 (2010).
CASPubMedPubMed CentralArticle Google Scholar
- 37.
Li, J. & Baccei, M. L. Pacemaker neurons within newborn spinal pain circuits. J. Neurosci.31, 9010–9022 (2011).
CASPubMedPubMed CentralArticle Google Scholar
- 38.
Ruscheweyh, R. & Sandkühler, J. Long-range oscillatory Ca2+ waves in rat spinal dorsal horn. Eur. J. Neurosci.22, 1967–1976 (2005).
PubMedArticle Google Scholar
- 39.
Zhou, L.-J. et al. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep.27, 3844-3859.e6 (2019).
CASPubMedPubMed CentralArticle Google Scholar
- 40.
Baron, R., Binder, A. & Wasner, G. Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol.9, 807–819 (2010).
PubMedArticlePubMed Central Google Scholar
- 41.
Defrin, R., Brill, S., Goor-Arieh, I., Wood, I. & Devor, M. ‘Shooting pain’ in lumbar radiculopathy and trigeminal neuralgia, and ideas concerning its neural substrates. Pain161, 308–318 (2020).
PubMedArticlePubMed Central Google Scholar
- 42.
Hanani, M. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: Implications for chronic pain. Brain Res.1487, 183–191 (2012).
CASPubMedArticlePubMed Central Google Scholar
- 43.
Velasco, R. et al. Neuropathic pain and nerve growth factor in chemotherapy-induced peripheral neuropathy: Prospective clinical-pathological study. J. Pain Symptom Manage.54, 815–825 (2017).
PubMedArticlePubMed Central Google Scholar
- 44.
Pezet, S. & McMahon, S. B. Neurotrophins: mediators and modulators of pain. Annu. Rev. Neurosci.29, 507–538 (2006).
CASPubMedArticlePubMed Central Google Scholar
- 45.
Fouad, K., Bennett, D. J., Vavrek, R. & Blesch, A. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front. Neurol.4, 00187 (2013).
Article Google Scholar
- 46.
Yanagisawa, T. et al. MEG-BMI to control phantom limb pain. Neurol. Med. Chir.58, 327–333 (2018).
Article Google Scholar
- 47.
Sarmiento, J. M., Chan, J. L., Cohen, J. D., Mukherjee, D. & Chu, R. M. L5 osteoid osteoma treated with partial laminectomy and cement augmentation. Cureus11, e4239 (2019).
PubMedPubMed Central Google Scholar
- 48.
Ruangkittisakul, A. et al. High sensitivity to neuromodulator-activated signaling pathways at physiological [K+] of confocally imaged respiratory center neurons in on-line-calibrated newborn rat brainstem slices. J. Neurosci. Off. J. Soc. Neurosci.26, 11870–11880 (2006).
CASArticle Google Scholar
- 49.
Biggs, J. E. et al. Analysis of the long-term actions of gabapentin and pregabalin in dorsal root ganglia and substantia gelatinosa. J. Neurophysiol.https://doi.org/10.1152/jn.00168.2014 (2014).
ArticlePubMedPubMed Central Google Scholar